Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.331
1.
J Anim Sci Biotechnol ; 15(1): 67, 2024 May 09.
Article En | MEDLINE | ID: mdl-38720393

BACKGROUND: We recently reported that supplementing glycine to soybean meal-based diets is necessary for the optimum growth of 5- to 40-g (Phase-I) and 110- to 240-g (Phase-II) hybrid striped bass (HSB), as well as their intestinal health. Although glycine serves as an essential substrate for syntheses of creatine and glutathione (GSH) in mammals (e.g., pigs), little is known about these metabolic pathways or their nutritional regulation in fish. This study tested the hypothesis that glycine supplementation enhances the activities of creatine- and GSH-forming enzymes as well as creatine and GSH availabilities in tissues of hybrid striped bass (HSB; Morone saxatilis♀ × Morone chrysops♂). METHODS: Phase-I and Phase-II HSB were fed a soybean meal-based diet supplemented with 0%, 1%, or 2% glycine for 8 weeks. At the end of the 56-d feeding, tissues (liver, intestine, skeletal muscle, kidneys, and pancreas) were collected for biochemical analyses. RESULTS: In contrast to terrestrial mammals and birds, creatine synthesis occurred primarily in skeletal muscle from all HSB. The liver was most active in GSH synthesis among the HSB tissues studied. In Phase-I HSB, supplementation with 1% or 2% glycine increased (P < 0.05) concentrations of intramuscular creatine (15%-19%) and hepatic GSH (8%-11%), while reducing (P < 0.05) hepatic GSH sulfide (GSSG)/GSH ratios by 14%-15%, compared with the 0-glycine group; there were no differences (P > 0.05) in these variables between the 1% and 2% glycine groups. In Phase-II HSB, supplementation with 1% and 2% glycine increased (P < 0.05) concentrations of creatine and GSH in the muscle (15%-27%) and liver (11%-20%) in a dose-dependent manner, with reduced ratios of hepatic GSSG/GSH in the 1% or 2% glycine group. In all HSB, supplementation with 1% and 2% glycine dose-dependently increased (P < 0.05) activities of intramuscular arginine:glycine amidinotransferase (22%-41%) and hepatic γ-glutamylcysteine synthetase (17%-37%), with elevated activities of intramuscular guanidinoacetate methyltransferase and hepatic GSH synthetase and GSH reductase in the 1% or 2% glycine group. Glycine supplementation also increased (P < 0.05) concentrations of creatine and activities of its synthetic enzymes in tail kidneys and pancreas, and concentrations of GSH and activities of its synthetic enzymes in the proximal intestine. CONCLUSIONS: Skeletal muscle and liver are the major organs for creatine and GSH syntheses in HSB, respectively. Dietary glycine intake regulates creatine and GSH syntheses by both Phase-I and Phase-II HSB in a tissue-specific manner. Based on the metabolic data, glycine is a conditionally essential amino acid for the growing fish.

2.
Redox Rep ; 29(1): 2345455, 2024 Dec.
Article En | MEDLINE | ID: mdl-38723197

OBJECTIVES: Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress. METHODS: ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo. RESULTS: We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models. DISCUSSION: our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.


Methylenetetrahydrofolate Dehydrogenase (NADP) , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Animals , Mice , Reactive Oxygen Species/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Cell Line, Tumor , Homeostasis , Aminohydrolases/metabolism , Aminohydrolases/genetics , Disease Progression , Xenograft Model Antitumor Assays
3.
Br J Radiol ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38730541

PURPOSE: To develop an artificial intelligence (AI) tool with automated pancreas segmentation and measurement of pancreatic morphological information on CT images to assist improved and faster diagnosis in acute pancreatitis. METHODS: This study retrospectively contained 1124 patients suspected for AP and received non-contrast and enhanced abdominal CT examination between September 2013 to September 2022. Patients were divided into training (N = 688), validation (N = 145), testing dataset (N = 291, N = 104 for normal pancreas, N = 98 for AP, N = 89 for AP complicated with PDAC (AP&PDAC)). A model based on convolutional neural network (MSAnet) was developed. The pancreas segmentation and measurement were performed via eight open-source models and MSAnet based tools, and the efficacy was evaluated using Dice similarity coefficient (DSC) and Intersection over union (IoU). The DSC and IoU for patients with different ages were also compared. The outline of tumor and edema in the AP and were segmented by clustering. The diagnostic efficacy for radiologists with or without the assistance of MSAnet tool in AP and AP&PDAC was evaluated using receiver operation curve and confusion matrix. RESULTS: Among all models, MSAnet based tool showed best performance on the training and validation dataset, and had high efficacy on testing dataset. The performance was age-affected. With assistance of the AI tool, the diagnosis time was significantly shortened by 26.8% and 32.7% for junior and senior radiologists, respectively. The area under curve in diagnosis of AP was improved from 0.91 to 0.96 for junior radiologist and 0.98 to 0.99 for senior radiologist. In AP&PDAC diagnosis, AUC was increased from 0.85 to 0.92 for junior and 0.97 to 0.99 for senior. CONCLUSION: MSAnet based tools showed good pancreas segmentation and measurement performance, which help radiologists improve diagnosis efficacy and workflow in both AP and AP with PDAC conditions. ADVANCES IN KNOWLEDGE: This study developed an AI tool with automated pancreas segmentation and measurement and provided evidence for AI tool assistance in improving the workflow and accuracy of AP diagnosis.

4.
Phytomedicine ; 129: 155722, 2024 May 06.
Article En | MEDLINE | ID: mdl-38733905

BACKGROUND: Autoimmune hepatitis (AIH), primarily mediated by T cells, is characterized by liver inflammation. Despite the advancements in understanding its pathogenesis, effective therapeutic options are limited. Naringin, a flavonoid abundant in citrus fruits, is recognized for its anti-inflammatory properties and ability to protect against various inflammatory diseases, including drug-induced liver injury. However, the exact effects of naringin on AIH and the mechanisms involved remain poorly understood. PURPOSE: We aim to determine the role of naringin in AIH, exploring its targets and actions in this disease. METHODS: Network pharmacology, molecular docking, and molecular dynamics simulations were utilized to predict the HUB targets connecting naringin, T cell-mediated autoimmune disorders, and AIH. Cellular thermal shift assays were used to determine the binding abilities of naringin with the HUB targets. An in vivo experiment confirmed the impact of naringin treatment on AIH development and underlying mechanisms. RESULTS: Naringin demonstrated therapeutic effects on ConA-induced AIH. There were 455 shared targets between naringin, T cell-mediated autoimmune diseases, and AIH. Ten HUB genes (AKT1, ALB, IL-6, IL-1ß, CTNNB1, TNF, TP53, MAPK3, VEGFA, and JUN) were identified through the PPI network. Gene ontology analysis revealed involvement in gene expression regulation, lipopolysaccharide-mediated signaling, and I-kappa kinase/NFκB signaling. Pathway analysis suggested TNF, Th1/Th2 cell differentiation, and Toll-like receptor pathways, with favorable naringin-HUB gene binding. Molecular docking confirmed albumin (ALB), IL-1ß, IL-6, and TNF as primary targets for naringin. Molecular dynamics simulations showed stable binding in ALB-naringin, TNF-naringin, and IL-1ß-naringin complexes. Naringin's hepatoprotective effect on AIH was supported by increased serum ALB and decreased hepatic inflammatory cytokines including IL-1ß, IL-6, and TNF-α. CONCLUSION: Our data underscore the potential of naringin as a preventive or therapeutical agent in T cell-mediated autoimmune diseases including AIH.

5.
Microbes Infect ; : 105352, 2024 May 08.
Article En | MEDLINE | ID: mdl-38729294

The blockade of programmed death-ligand 1 (PD-L1) pathway has been clinically used in cancer immunotherapy, while its effects on infectious diseases remain elusive. Roles of PD-L1 signaling in the macrophage-mediated innate immune defense against M.tb is unclear. In this study, the outcomes of tuberculosis (TB) in wild-type (WT) mice treated with anti-PD-1/PD-L1 therapy and macrophage-specific Pdl1-knockout (Pdl1ΔΜΦ) mice were compared. Treatment with anti-PD-L1 or anti-PD-1 benefited protection against M.tb infection in WT mice, while Pdl1ΔΜΦ mice exhibited the increased susceptibility to M.tb infection. Mechanistically, the absence of PD-L1 signaling impaired M.tb killing by macrophages. Furthermore, elevated STAT3 activation was found in PD-L1-deficient macrophages, leading to increased interleukin (IL)-6 production and reduced inducible nitric oxide synthase (iNOS) expression. Inhibiting STAT3 phosphorylation partially impeded the increase in IL-6 production and restored iNOS expression in these PD-L1-deficient cells. These findings provide valuable insights into the complexity and mechanisms underlying anti-PD-L1 therapy in the context of tuberculosis.

6.
Med Biol Eng Comput ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38724769

Motor imagery (MI) based brain-computer interfaces (BCIs) decode the users' intentions from electroencephalography (EEG) to achieve information control and interaction between the brain and external devices. In this paper, firstly, we apply Riemannian geometry to the covariance matrix extracted by spatial filtering to obtain robust and distinct features. Then, a multiscale temporal-spectral segmentation scheme is developed to enrich the feature dimensionality. In order to determine the optimal feature configurations, we utilize a linear learning-based temporal window and spectral band (TWSB) selection method to evaluate the feature contributions, which efficiently reduces the redundant features and improves the decoding efficiency without excessive loss of accuracy. Finally, support vector machines are used to predict the classification labels based on the selected MI features. To evaluate the performance of our model, we test it on the publicly available BCI Competition IV dataset 2a and 2b. The results show that the method has an average accuracy of 79.1% and 83.1%, which outperforms other existing methods. Using TWSB feature selection instead of selecting all features improves the accuracy by up to about 6%. Moreover, the TWSB selection method can effectively reduce the computational burden. We believe that the framework reveals more interpretable feature information of motor imagery EEG signals, provides neural responses discriminative with high accuracy, and facilitates the performance of real-time MI-BCI.

7.
Water Sci Technol ; 89(9): 2384-2395, 2024 May.
Article En | MEDLINE | ID: mdl-38747955

Cr(VI) and phenol commonly coexist in wastewater, posing a great threat to the environment and human health. However, it is still a challenge for microorganisms to degrade phenol under high Cr(VI) stress. In this study, the phenol-degrading strain Bacillus cereus ZWB3 was co-cultured with the Cr(VI)-reducing strain Bacillus licheniformis MZ-1 to enhance phenol biodegradation under Cr(Ⅵ) stress. Compared with phenol-degrading strain ZWB3, which has weak tolerance to Cr(Ⅵ), and Cr(Ⅵ)-reducing strain MZ-1, which has no phenol-degrading ability, the co-culture of two strains could significantly increase the degraded rate and capacity of phenol. In addition, the co-cultured strains exhibited phenol degradation ability over a wide pH range (7-10). The reduced content of intracellular proteins and polysaccharides produced by the co-cultured strains contributed to the enhancement of phenol degradation and Cr(Ⅵ) tolerance. The determination coefficients R2, RMSE, and MAPE showed that the BP-ANN model could predict the degradation of phenol under various conditions, which saved time and economic cost. The metabolic pathway of microbial degradation of phenol was deduced by metabolic analysis. This study provides a valuable strategy for wastewater treatment containing Cr(Ⅵ) and phenol.


Biodegradation, Environmental , Chromium , Machine Learning , Phenol , Phenol/metabolism , Chromium/metabolism , Bacillus cereus/metabolism , Water Pollutants, Chemical/metabolism , Bacillus licheniformis/metabolism
8.
Article En | MEDLINE | ID: mdl-38720529

Na-ion batteries (NIBs) hold promise as a leading option for large-scale energy storage. However, their development faces challenges due to the lack of high-performance cathode materials. P2-type layered oxides are seen as potential cathode materials for NIBs due to higher structure stability, yet their commercialization is hindered by limited capacity and subpar phase transitions during Na extraction and insertion at high voltages. In this study, we introduce a new P2-type cathode material, Na0.76Ni0.23Li0.1Ti0.02Mn0.65O1.998F0.02 (NLTMOF), synthesized with ternary Li/Ti/F substitution. This modification of ternary Li/Ti/F substitution significantly tailors the electronic structures, increasing the number of valence electrons near the Fermi energy level. This facilitates the electronic conductivity and their involvement in charge compensation, thereby enhancing reversible capacity. Additionally, ternary doping synergistically adjusts the Na occupancy at the Na layer for favorable Na extraction without P2-O2 phase transitions even under a high voltage of 4.4 V, boosting cycling stability. As a result, NLTMOF demonstrates a reversible capacity of 110.0 and 132.2 mAh g-1 at 2-4.2 and 2-4.4 V, respectively, and maintains greatly enhanced cycling stability over long cycles. This study sheds light on the design of transition metal oxides for advanced cathode materials through the modulation of electronic structure and Na occupancy in cathode materials, thus promoting the development of NIBs.

10.
J Cardiothorac Surg ; 19(1): 277, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704582

BACKGROUND: Intravascular lithotripsy (IVL) represents a novel approach in the management of coronary calcification. This technique employs acoustic pressure waves, generated by a shockwave balloon, to effectively fracture both superficial and deep calcification in situ. The efficacy and safety of IVL have been convincingly demonstrated through the Disrupt CAD I-IV studies. While IVL is associated with the occurrence of atrial and ventricular arrhythmias, there is no evidence to indicate it causes myocardial ischemia. CASE DESCRIPTION: A 71-year-old man was admitted presenting with chest pain. His previous coronary angiography revealed stenosis and calcification in the left anterior descending branch. An attempt to predilate the lesion using two Lacrosse non-slip element balloons was unsuccessful. Ventricular premature beats and transient ST-segment depression were captured during the utilization of IVL. The operator gradually extended the pulse emission interval across two consecutive cycles to mitigate myocardial ischemia. Notably, when the interval reached 30s, the patient had no chest pain or ST-segment changes. Subsequent images of intravascular ultrasound confirmed calcification ruptures. Therapeutic intervention included the placement of a stent and the application of a drug-coated balloon in the left anterior descending branch. A telephonic follow-up six months later indicated the patient had no discomfort. CONCLUSIONS: This case underscores the effectiveness of gradually extending the pulse emission interval as a strategic complement to the clinical application of IVL. In certain clinical scenarios, it may become imperative to suspend the pulse delivery to improve myocardial blood supply.


Lithotripsy , Myocardial Ischemia , Humans , Male , Aged , Lithotripsy/methods , Myocardial Ischemia/therapy , Coronary Angiography , Vascular Calcification/therapy
11.
BMC Public Health ; 24(1): 1224, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702746

BACKGROUND: Accumulating evidence suggests a pivotal role of vitamin B2 in the pathogenesis and progression of prostate cancer (PCa). Vitamin B2 intake has been postulated to modulate the screening rate for PCa by altering the concentration of prostate-specific antigen(PSA). However, the relationship between vitamin B2 and PSA remains indeterminate. Hence, we conducted a comprehensive evaluation of the association between vitamin B2 intake and PSA levels, utilizing data from the National Health and Nutrition Examination Survey (NHANES) database. METHODS: From a pool of 20,371 participants in the NHANES survey conducted between 2003 and 2010, a cohort of 2,323 participants was selected for the present study. The male participants were classified into four distinct groups based on their levels of vitamin B2 intake. We employed a multiple linear regression model and a non-parametric regression method to investigate the relationship between vitamin B2 and PSA levels. RESULTS: The study cohort comprised of 2,323 participants with a mean age of 54.95 years (± 11.73). Our findings revealed a statistically significant inverse correlation between vitamin B2 intake (mg) and PSA levels, with a reduction of 0.13 ng/ml PSA concentration for every unit increase in vitamin B2 intake. Furthermore, we employed a fully adjusted model to construct a smooth curve to explore the possible linear relationship between vitamin B2 intake and PSA concentration. CONCLUSIONS: Our study in American men has unveiled a notable inverse association between vitamin B2 intake and PSA levels, potentially posing a challenge for the identification of asymptomatic prostate cancer. Specifically, our findings suggest that individuals with higher vitamin B2 intake may be at a greater risk of being diagnosed with advanced prostate cancer in the future, possibly indicating a detection bias. These results may offer a novel explanation for the observed positive correlation between vitamin B2 intake and prostate cancer.


Nutrition Surveys , Prostate-Specific Antigen , Prostatic Neoplasms , Riboflavin , Humans , Male , Prostate-Specific Antigen/blood , Middle Aged , United States/epidemiology , Aged , Prostatic Neoplasms/blood , Prostatic Neoplasms/epidemiology , Riboflavin/administration & dosage , Adult
12.
Nat Commun ; 15(1): 3755, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704385

Heparin is an important anticoagulant drug, and microbial heparin biosynthesis is a potential alternative to animal-derived heparin production. However, effectively using heparin synthesis enzymes faces challenges, especially with microbial recombinant expression of active heparan sulfate N-deacetylase/N-sulfotransferase. Here, we introduce the monosaccharide N-trifluoroacetylglucosamine into Escherichia coli K5 to facilitate sulfation modification. The Protein Repair One-Stop Service-Focused Rational Iterative Site-specific Mutagenesis (PROSS-FRISM) platform is used to enhance sulfotransferase efficiency, resulting in the engineered NST-M8 enzyme with significantly improved stability (11.32-fold) and activity (2.53-fold) compared to the wild-type N-sulfotransferase. This approach can be applied to engineering various sulfotransferases. The multienzyme cascade reaction enables the production of active heparin from bioengineered heparosan, demonstrating anti-FXa (246.09 IU/mg) and anti-FIIa (48.62 IU/mg) activities. This study offers insights into overcoming challenges in heparin synthesis and modification, paving the way for the future development of animal-free heparins using a cellular system-based semisynthetic strategy.


Anticoagulants , Escherichia coli , Heparin , Sulfotransferases , Sulfotransferases/metabolism , Sulfotransferases/genetics , Heparin/metabolism , Heparin/biosynthesis , Anticoagulants/metabolism , Anticoagulants/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Humans , Polysaccharides/metabolism , Polysaccharides/biosynthesis , Polysaccharides/chemistry , Mutagenesis, Site-Directed , Protein Engineering/methods , Disaccharides/metabolism , Disaccharides/biosynthesis , Disaccharides/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics
13.
Animals (Basel) ; 14(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731262

This study aimed to investigate differences in testicular tissue morphology, gene expression, and marker genes between sexually immature (1-year-old) and sexually mature (10-year-old) Mongolian horses. The purposes of our research were to provide insights into the reproductive physiology of male Mongolian horses and to identify potential markers for sexual maturity. The methods we applied included the transcriptomic profiling of testicular cells using single-cell sequencing techniques. Our results revealed significant differences in tissue morphology and gene expression patterns between the two age groups. Specifically, 25 cell clusters and 10 cell types were identified, including spermatogonial and somatic cells. Differential gene expression analysis highlighted distinct patterns related to cellular infrastructure in sexually immature horses and spermatogenesis in sexually mature horses. Marker genes specific to each stage were also identified, including APOA1, AMH, TAC3, INHA, SPARC, and SOX9 for the sexually immature stage, and PRM1, PRM2, LOC100051500, PRSS37, HMGB4, and H1-9 for the sexually mature stage. These findings contribute to a deeper understanding of testicular development and spermatogenesis in Mongolian horses and have potential applications in equine reproductive biology and breeding programs. In conclusion, this study provides valuable insights into the molecular mechanisms underlying sexual maturity in Mongolian horses.

14.
Biochem Biophys Res Commun ; 715: 149979, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38678779

Endothelial dysfunction is an initiating factor in atherosclerosis. Endothelial cells (ECs) are constantly subject to blood flow shear stress, and atherosclerotic plaques tend to occur in aortic bends or bifurcations impaired by low oscillatory shear stress (OSS). However, the mechanism that how OSS affects the initiation and progression of atherosclerosis remains to be explored. Here, we first reported that OSS can promote endothelial dysfunction and atherogenesis in vivo and in vitro by activating STING pathway. Mechanistically, at atherosclerosis-prone areas, OSS caused mitochondria damage in ECs, leading to the leakage of mitochondrial DNA (mtDNA) into the cytoplasm. The cytoplasmic mtDNA was recognized by cGAS to produce cGAMP, activating the STING pathway and leading to endothelial senescence, which resulted in endothelial dysfunction and atherosclerosis. We found that STING was activated in plaques of atherosclerotic patients and in aortic arch ECs of high-fat diet (HFD)-fed ApoeKO mice, as well as in ECs exposed to OSS. STING-specific deficiency in ECs attenuates endothelial senescence and resulted in a significant reduction in aortic arch plaque area in HFD-fed ApoeKO mice. Consistently, specific deficiency or pharmacological inhibition of STING attenuated OSS-induced senescence and endothelial dysfunction. Pharmacological depletion of mtDNA ameliorated OSS-induced senescence and endothelial dysfunction. Taken together, our study linked hemodynamics and endothelial senescence, and revealed a novel mechanism by which OSS leads to endothelial dysfunction. Our study provided new insights into the development of therapeutic strategies for endothelial senescence and atherosclerosis.


Atherosclerosis , Cellular Senescence , DNA, Mitochondrial , Endothelial Cells , Membrane Proteins , Mice, Inbred C57BL , Stress, Mechanical , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Male , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Mitochondria/metabolism , Mitochondria/pathology , Diet, High-Fat , Cells, Cultured
15.
Anal Chim Acta ; 1303: 342477, 2024 May 15.
Article En | MEDLINE | ID: mdl-38609257

CRISPR/Cas12a-based nucleic acid assays have been increasingly used for molecular diagnostics. However, most current CRISPR/Cas12a-based RNA assays require the conversion of RNA into DNA by preamplification strategies, which increases the complexity of detection. Here, we found certain chimeric DNA-RNA hybrid single strands could activate the trans-cleavage activity of Cas12a, and then discovered the activating effect of split ssDNA and RNA when they are present simultaneously. As proof of concept, split nucleic acid-activated Cas12a (SNA-Cas12a) strategy was developed for direct detection of miR-155. By adding a short ssDNA to the proximal end of the crRNA spacer sequence, we realized the direct detection of RNA targets using Cas12a. With the assistance of ssDNA, we extended the limitation that CRISPR/Cas12a cannot be activated by RNA targets. In addition, by taking advantage of the programmability of crRNA, the length of its binding to DNA and RNA was optimized to achieve the optimal efficiency in activating Cas12a. The SNA-Cas12a method enabled sensitive miR-155 detection at pM level. This method was simple, rapid, and specific. Thus, we proposed a new Cas12a-based RNA detection strategy that expanded the application of CRISPR/Cas12a.


MicroRNAs , Nucleic Acids , MicroRNAs/genetics , CRISPR-Cas Systems , RNA, Guide, CRISPR-Cas Systems , DNA, Single-Stranded/genetics
16.
Langmuir ; 40(18): 9520-9528, 2024 May 07.
Article En | MEDLINE | ID: mdl-38656146

Organic selenium (Se) accounts for up to 10-80% of total Se in soils, and l-selenomethionine (SeMet) is a typical organic Se species. However, the migration of SeMet in soils remains elusive. This study investigated the solid-liquid distribution, adsorption, desorption by phosphate, and self-oxidization of SeMet in solution under the influence of ferrihydrite, goethite, and hematite through batch experiments. Iron oxides could adsorb a much larger amount of SeMet than inorganic Se. At the initial Se element concentrations of 0-200 mg/L, the solid/liquid partition coefficient of SeMet was constant, which was 0.41, 0.43, and 0.50 on ferrihydrite, goethite, and hematite, respectively. In addition, the adsorption process of SeMet on the three iron oxides could be well described by the linear driving force model. Accordingly, the intraparticle diffusion coefficient of SeMet in ferrihydrite, goethite, and hematite was 1.4 × 103, 7.9 × 104, and 1.2 × 105 nm2/min, respectively. The adsorption of SeMet on the three iron oxides was slightly influenced by the pH and the coexisting ions, such as Cl-, NO3-, SO42-, and H2PO4-. The desorption ratio of SeMet on the three iron oxides by phosphate was lower than 2.5%. SeMet would aggregate the nanoparticles of iron oxides, resulting in a synergistic effect on the adsorption of phosphate. The oxidization ratio of SeMet was 23.9% in the solution, while it decreased to 17.1-17.5% in iron oxide suspensions. For this oxidization process, the three iron oxides exhibited varying effects to decelerate SeMet oxidation, as represented by the equivalent reaction. The findings of this study reveal the migration of SeMet in the water-soil interface under the influence of iron oxides, which can improve the understanding of Se cycling in the environment as well as provide some guidance for the better utilization of Se in soils and environmental remediation of Se pollution.

17.
J Transl Med ; 22(1): 349, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38610029

BACKGROUND: Chimeric antigen receptor T (CAR-T) cell therapy, as an emerging anti-tumor treatment, has garnered extensive attention in the study of targeted therapy of multiple tumor-associated antigens in hepatocellular carcinoma (HCC). However, the suppressive microenvironment and individual heterogeneity results in downregulation of these antigens in certain patients' cancer cells. Therefore, optimizing CAR-T cell therapy for HCC is imperative. METHODS: In this study, we administered FGFR4-ferritin (FGFR4-HPF) nanoparticles to the alpaca and constructed a phage library of nanobodies (Nbs) derived from alpaca, following which we screened for Nbs targeting FGFR4. Then, we conducted the functional validation of Nbs. Furthermore, we developed Nb-derived CAR-T cells and evaluated their anti-tumor ability against HCC through in vitro and in vivo validation. RESULTS: Our findings demonstrated that we successfully obtained high specificity and high affinity Nbs targeting FGFR4 after screening. And the specificity of Nbs targeting FGFR4 was markedly superior to their binding to other members of the FGFR family proteins. Furthermore, the Nb-derived CAR-T cells, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in both experiments when in vitro and in vivo. CONCLUSIONS: In summary, the results of this study suggest that the CAR-T cells derived from high specificity and high affinity Nbs, targeting FGFR4, exhibited significantly enhanced anti-tumor efficacy in vitro and in vivo. This is an exploration of FGFR4 in the field of Nb-derived CAR-T cell therapy for HCC, holding promise for enhancing safety and effectiveness in the clinical treatment of HCC in the future.


Camelids, New World , Carcinoma, Hepatocellular , Liver Neoplasms , Receptors, Chimeric Antigen , Single-Domain Antibodies , Humans , Animals , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Tumor Microenvironment
18.
Heliyon ; 10(8): e29655, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38655365

Background: The major facilitator superfamily glucose transporters (GLUTs), encoded by solute carrier 2A (SLC2A) genes, mediate the transmembrane movement and uptake of glucose. To satisfy the improved energy demands, glycolysis flux is increased in cancers compared with healthy tissues. Multiple diseases, including cancer, have been associated with GLUTs. Nevertheless, not much research has been done on the functions of SLC2As in pan-cancer prognosis or their clinical treatment potential. Methods: The SLC2A family genes' level of expression and prognostic values were analyzed in relation to pan-cancer. We then examined the association among SLC2As expression and TME, Stemness score, clinical characteristics, immune subtypes, and drug sensitivity. We merged bioinformatics analysis techniques with up-to-date public databases. Additionally, SLC2As from the KOBAS database were subjected to enrichment analysis. Results: We discovered that SLC2As' gene expression differed significantly between normal tissues and many malignancies. A number of tumors from various databases demonstrate a relationship between prognosis and SLC2A family gene expression. For instance, SLC2A2 and SLC2A5 were associated with the overall survival (OS) of hepatocellular carcinoma. SLC2A1 was associated with the OS of lung adenocarcinoma and pancreatic adenocarcinoma. Moreover, the SLC2A family gene expression is significantly correlated with the pan-cancer stromal and immune scores, and the RNA and DNA stemness scores. Furthermore, we found that the majority of SLC2As had a strong correlation with the tumor stages in KIRC. The immunological subtypes and all members of the SLC2A gene family exhibited a substantial correlation. Moreover, pathways containing insulin resistance and adipocytokine signaling pathway may influence the progression of some cancers. Finally, there is a significant positive or negative connection between drug sensitivity and SLC2A1 expression. Conclusion: Our research highlights the significant promise of SLC2As as prognostic indicators and offers insightful approaches for upcoming exploration of SLC2As as putative therapeutic targets in malignancies.

19.
Anim Biosci ; 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38665091

Objective: Rare study of the non-coding and regulatory regions of the genome limits our ability to decode the mechanisms of fatty liver hemorrhage syndrome (FLHS) in chickens. Method: Herein, we constructed the HFD-induced FLHS chicken model to investigate the genome-wide active enhancers and transcriptome by H3K27ac target chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-Seq) profiles of normal and FLHS liver tissues. Concurrently, an integrative analysis combining ChIP-seq with RNA-Seq and a comparative analysis with chicken FLHS, rat Non-alcoholic fatty liver disease (NAFLD) and human NAFLD at the transcriptome level revealed the enhancer target genes and conservative genes involved in metabolic processes. Results: In total, 56 and 199 peak-genes were identified in upregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥ 0.5 & log2(FoldChange) ≥ 1) (PP) and downregulated peak-genes positively regulated by H3K27ac (Cor (peak-gene correlation) ≥ 0.5 & log2(FoldChange) ≤ -1)(PN), respectively; then we screened key regulatory targets mainly distributing in lipid metabolism (PCK1, APOA4, APOA1, INHBE) and apoptosis (KIT, NTRK2) together with MAPK and PPAR signaling pathway in FLHS. Intriguingly, PCK1 was also significantly covered in up-regulated super-enhancers (SEs), which further implied the vital role of PCK1 during the development of FLHS. Conclusion: Together, our studies provided new insights into the pathogenesis and potential therapy biomarkers of FLHS.

20.
Int Med Case Rep J ; 17: 359-365, 2024.
Article En | MEDLINE | ID: mdl-38651079

Immune checkpoint inhibitors (ICI) have become a new hope for many patients with advanced cancer by blocking tumor immune escape. Bladder cancer is a common malignant tumor of the urinary tract epithelium that often relapses and metastasizes after surgery, chemotherapy, and radiotherapy. Immunotherapy has dramatically improved patient survival rates and clinical benefits as a new, potentially effective therapy. However, avoidance of various immune-related adverse events (irAEs) remains an implausible idea. ICI-induced myocarditis is different from viral myocarditis, and mortality is still high with the current treatment. We report the case of an 82-year-old female patient with ICI-induced fulminant myocarditis and myasthenia gravis. Although she actively accepted the current mainstream treatment for immune-related myocarditis and myasthenia, she died of heart and respiratory failure. Analyzing and reporting the patient's disease development process and the changes in related indicators may help peers gain a deeper understanding of immune-related adverse events and reduce the mortality of immune-related myocarditis.

...